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In 2001, Dr. Geoffery Chang published groundbreaking research mapping the structure of a 
protein found in cell membranes. Then, “the dream turned into a nightmare.” Chang and his lab 
retracted five papers due to a software bug that had swapped two columns of data (Miller, 2006). 
In commercial organizations, such an error may still occur, but would likely be detected before 
release. Unfortunately, while traditional software engineering (SE) practices such as unit testing 
have been shown to enhance the quality of scientific software (Sletholt and Hannay, 2012), 
adoption of modern SE techniques has been limited and a gap has emerged between the scientific 
and SE communities (Kelly, 2007).  

Past research offers some explanations for this gap. A survey by Heaton et al. (2012) suggests 
that lack of practice adoption is tied to a lack of knowledge regarding specific techniques. Kelly 
discusses how scientific software must adapt quickly to advances in the domain while also being 
carefully managed to ensure data integrity.  These mixed goals make the determination of an 
appropriate SE process challenging (Kelly, 2011).  Proposed solutions include enumerations of 
recommended practices (Heroux et al., 2009), customizations of specific techniques (Li et al., 
2011), and increased training (Kelly, 2007).   

While valuable, these approaches address only the short-term issues.  Lists of practices offer a 
good starting point, but similar situations in other industries have shown that exhaustive manuals 
are an ineffective means to institute process improvement (Orr, 1996).  Custom-tailored practices 
are effective, but create a maintenance problem and dependence on SE experts.  Targeted 
training is useful, but we cannot presume to train all scientists to also be software engineers. To 
address the long-term needs of scientific researchers, I propose incorporating existing efforts into 
a larger strategy that will close the chasm and allow scientists to drive their own software process 
improvement (SPI) activities.  

To provide scientists with the support they require, we must first understand the applicability of 
existing SPI strategies and the characteristics that must be considered to guide scientific SPI.  
Specifically, I will address the following: 

1. Of traditional SE project characteristics, which are applicable as attributes to describe 
scientific research projects? 

2. What other characteristics can be used to define specific instances of scientific research 
projects and how software is utilized in these projects?  

3. What correlations exist between project characteristics (or sets thereof) and the successful 
enactment of specific SE practices? 

Answering these questions will provide the necessary inputs to construct a theoretical model of 
the factors that define scientific software projects. This includes any relevant organizational and 
technical characteristics. However, in order to ensure the validity of any studies based upon this 
model, the results must be grounded in established SE principles and account for many possible 
combinations of variables. For example, it is reasonable to hypothesize that the applicability of 
source control practices will correlate to the size of the research project; however, this is only 
one of many possible hypotheses.  Conducting experiments to test each hypothesis would be 
inefficient and may overlook non-traditional characteristics. A more effective methodology is to 
discover these relationships via a broader, deductive study. To this end, my research will 



leverage a grounded theory approach to ensure that each research construct, data collection 
procedure and conclusion is clearly derived from its predecessors.   

Formal grounded theory (Corbin & Strauss, 1990) suggests that the research process itself is 
important and that hypotheses should evolve over time.  In order to support this systematic 
evolution of theory, data collection and analysis are executed simultaneously to prevent planned 
analysis from creating bias in in the results. Preliminary research results have demonstrated the 
usefulness of grounded theory in ensuring construct validity in SE process research by providing 
traceability between mainstream SE process principles and survey design (Mesh, 2012).   

In order to gain additional insight into the defining characteristics of scientific software projects, 
data sources beyond surveys must be considered. Open and axial coding of related work will 
provide a strong conceptual base.  Similarly, longitudinal case studies of scientific research 
projects will uncover trends not visible via the snapshots provided by surveys.  

Individually, these studies will provide useful correlations and immediate SPI lessons learned for 
the scientific community.  Unified via consistent coding and analysis, my approach will establish 
protocols and a base of strong empirical data.  This data can then be used to generate and test 
new hypotheses regarding SE process improvement for scientists. This incremental delivery of 
value and methodology refinement is also inline with my personal goals: to provide both short- 
and long-term value to the scientific and academic communities.  
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